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A b s t r a c t  

Crystals of the protein B-phycoerythrin from the red 
alga Porphyridium cruentum undergo twinning by 
merohedry in which the two members of the twin are 
related by rotation about (1,1,-1,0), a symmetry 
operation of the lattice but not of the crystals. Several 
methods are compared for estimation of the volume 
fractions of the two members of the twin so that 
measured data can be corrected for this twinning. The 
effect of these corrections on the final electron-density 
map is analyzed. Results show that when the volume 
fraction of the smaller crystal in a twinned specimen 
used for structure determination by multiple iso- 
morphous replacement is 0-0.1,  correction of dif- 
fraction data for twinning results in a small but 
significant improvement in the accuracy of the electron- 
density map. 

I n t r o d u c t i o n  

Crystals of the light-harvesting protein B-phyco- 
erythrin from the marine red alga Porphyridium 
cruentum form in space group R3 with a = b = 189 
and c = 60 A in the hexagonal setting (Sweet, Fuchs, 
Fisher & Glazer, 1977). Virtually all crystals ex- 
perience some twinning, ranging from a negligible 
amount to nearly equal fractions of the two individual 
crystals in the twin. Although distinct twin domains can 
sometimes be distinguished in the polarizing micro- 
scope, the twinning is of the twin-lattice-symmetry 
type (Donnay & Donnay, 1974) in which reflection 
hkil of crystal I is superimposed onto reflection khil 
of crystal II. This sort of twinning, where the reciprocal 
lattices of both twinned individuals coincide and where 
the twinning operation, here rotation by 180 ° about 
(1 ,1,-  1,0), involves a symmetry element of the 
lattice alone but not of the crystal, was recognized 
by Bravais who called it twinning by merohedry 
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(Friedel, 1926; Buerger, 1960). Diffraction patterns 
from a single crystal and from a twin differ only in the 
distribution of intensities [Fig. l(a) and (b), 
respectively]. 

In a twin by merohedry, the measured diffraction 
intensities I 1 and 12, related to one another by the twin 
operation, are linear combinations of the intensities J~ 
and J2 which would be observed from an untwinned 
crystal (Buerger, 1960): 

Ii = (1 - x )J1 + x J2, 

12 = (1 - x)J2 + x / l ,  

where x is the volume fraction of the smaller crystal in 
the twin. One can solve this system for J~ and J2 to 
obtain 

I 1 - -  x ( I  l + I2) 
J1 = (1) 

1 - -  2x 

Clearly, measured intensities can be corrected for 
crystal twinning if the volume fraction x can be 
determined and differs from 0.5. 

Having estimated volume fractions for all of the 
specimens used in the determination of a protein crystal 
structure, we are able to compare the methods used to 
estimate them and to discuss the usefulness of the 
corrections which were made to data obtained from 
twinned crystals. 

E s t i m a t i o n  o f  the  v o l u m e  f r a c t i o n  

We have developed four complementary techniques for 
assessment of crystal twinning. All four have been used 
during the solution of the structure of B-phycoerythrin 
by standard techniques: multiple isomorphous replace- 
ment and symmetry averaging (Fisher, Woods, Fuchs 
& Sweet, 1980). One of them, the 'Britton' technique, 
allows estimation of the volume fraction for data from 
a single specimen. The second and third provide an 
estimate of the approximate difference in twinning 
between two different twinned crystals. The fourth is 
optimization of volume fractions during structure- 
factor least-squares refinement of heavy-atom para- 
meters. Each of these can be described in some detail. 
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When I n is the smaller of two twinning-related 
intensities, the right-hand side of (1) can become 
negative for some value of x less than 0.5. This 
suggests a method by which the volume fraction can be 
estimated for data from a single twinned specimen. For 
each specimen used in data collection, twinning-related 
intensities are compared, and the number of J ' s  which 
are predicted to be less than zero are tabulated for 
increasing values of x. Figs. 2(a) and 2(b) illustrate a 
graphical treatment of such data. We take the x value 
at the sharp break in the curve shown in Fig. 2(a) as an 
accurate estimate of the upper bound of x. The broader 
knee in the curve in Fig. 2(b) does not yield an accurate 
estimate of x. Since only a few intensities determine the 
position of the break, the precision of this estimate of x 
depends strongly upon accurate measurement of the 
weakest intensities. Britton (1972) used a virtually 
identical method for the correction of data from 
twinned crystals of diiodoacetylene (Dunitz, Gehrer & 
Britton, 1972), and Murray-Rust (1973) used a 
different interpretation of (1) which we found to be less 
sensitive. 

A consequence of twinning by merohedry is that 
since observed intensities represent averages of true 
intensities with uncorrelated values, the frequency of 
occurrence of very small intensities decreases as the 
volume fraction of the minor crystal in the twin 
increases. Rees (1980) has very recently explored the 
statistics of intensity measurements from crystals 

twinned by merohedry. He has shown that data from 
twinned crystals of the protein complex between 
carboxypeptidase A and the potato carboxypeptidase 
inhibitor (Rees & Lipscomb, 1980) fit his theoretical 
model. He has used this model to estimate volume 
fractions for twinned crystals (Rees, 1980) and found 
that these values agree well with those determined by 
the methods of Britton (1972) and Murray-Rust 
(1973). An important feature of Rees's treatment is 
that it can be used in the absence of any knowledge of 
twinning mechanism for the assessment of twinning in a 
specimen. We did not have the opportunity to apply 
these ideas to data from B-phycoerythrin crystals. 

The second set of techniques depends upon the idea 
that if one crystal is not twinned, or if data from that 
crystal have been corrected for twinning, these data can 
be compared to those from other crystals in order to 
determine the others' volume fractions. One of these 
techniques involves a search for an x which minimizes 
R = ~ h l J h  -- Khl/~,hlJhl where the J ' s  are intensities 
with no twinning and the K's are from another crystal 
and are corrected for twinning by (1). The method 
yields reasonable results, but they are imprecise since 
the minima in curves of R v e r s u s  x are broad and 
shallow. The other technique involves estimation of the 
volume fraction by comparison of each equivalent pair 
of twinning-related intensities from two different 
crystals. If intensities J~ and J2 come from an 
untwinned crystal and equivalent intensities I] and 12 
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Fig. 1. Portions of hkO-zone precession photographs of (a) sfightly twinned (x = 0.05) and (b) highly twinned (x = 0.4) crystals of 
B-phycoerythrin. 
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come from a twin, these intensities should be related by 
(1). One can then show that each pair of intensities can 
give an estimate of the volume fraction: 

s l l  --  J l  
x - - - ,  (2) 

J2 - Jl 

where s = (J1 + J z ) / ( I 1  + Iz).  In this way the I 's  are 
pairwise scaled to the J ' s  in a way which distributes 
errors equally among the observations• When we 
compare data from two specimens in this manner, we 
find that the estimates of x are distributed in an 
approximately normal distribution, as shown in Fig. 3. 
These distributions were fit by a least-squares method 
either to one or to a sum of two Gaussian functions. 
When the two specimens differ only in volume fraction, 
the distribution is fit adequately by a single Gaussian 
function, as shown in Fig. 3(a). When there is a 
chemical difference between the two specimens used in 
the comparison, e.g. when one is a native crystal and 
the other is an isomorphous heavy-atom derivative, a 
second function is required to give an adequate fit, as 
shown in Fig. 3(b). This presumably results from large 

The final technique we have employed for esti- 
mation of the volume fraction is its determination 
during structure-factor least-squares refinement of 
parameters describing the isomorphous heavy-atom 
derivatives. We used a refinement procedure similar to 
that described by Dickerson, Weinzierl & Palmer 
(1968) to minimize the mean-square lack of closure of 
the complex structure factors. One can show formally 
that the data contain information sufficient to deter- 
mine volume fractions for all the native and heavy- 
atom-derivative crystals. In practice, however, these 
parameters are highly correlated and the refinement 
proceeds only when one or more of them are held fixed 
at a value determined by an independent method. 

The results of the application of these techniques to 
data from twinned crystals of B-phycoerythrin are 
shown in Table 1. Five different specimens were used in 
the analysis, one of which was the native protein; two 
were the same heavy-atom derivative. We found that 
when the measured data were of high quality, 'Britton' 
plots like the one shown in Fig. 2(a) yielded seemingly 

systematic differences in the intensities, owing to 
heavy-atom substitution. One should note that (2) is 
formally correct only when the two specimens used in 
the comparison are chemically identical and when one 
of the two is not twinned or its data have been 
corrected for twinning. We found, however, that this 
method could be used to confirm independent indi- 
cations of the d i f f e r e n c e  in volume fraction, even 
between crystals with different isomorphous heavy- 
atom substitution, as long as the volume fractions 

~ glgo i ~  equli~iY rdl sl i~bl ilhne diilfde~il i~n elfb ~i  t i l l  ° n i i )  f tTil 

involved were low. 

Fig. 2. The number of intensities predicted to be negative by 
relation (1) as a function of the twinning fraction x. We choose to 
call this a 'Britton' plot. (a) Three-dimensional, 5.0 A-resolution 
data from crystals of B-phycoerythrin measured by rotation 
photography (crystal I in Table 1). (b) The same sort of data 
from an isomorphous heavy-atom derivative of B-phycoerythrin 
(crystal 3 in Table 1). 

functions of the formf(x) = (A/ov/2zr) exp [ - ( x -  Xo)2/2o 21. (a) 
Three-dimensional, 5.0 A-resolution data from crystals of 

/ B-phycoerythrin measured by rotation photography. The data 
o.0s.,. ,0., 0.,5 0 . . . .  0.bs~. " " ~0'.l . . . .  0.'15 compared are from the same isomorphous heavy-atom deri- 

vative (crystals 2 and 3 in Table I). The volume fraction for the 
(a) (b) less-twinned crystal was estimated by other methods as 0.9%. 

The value of a o for the single function in the fit is cr = 4.3%. (b) 
The same sort of data, coming from a native and a heavy-atom 
derivative crystal (crystals 1 and 2 in Table 1). The less-twinned 
crystal is the same as that used in (a). The relative integrals and 
values of o for the two functions in the fit are 11 = 0.41, o 1 = 3.2, 
12 = 0.59 and 02 = 11.3. Values of x o were calculated to be the 
same within experimental error for the two functions in the sum. 
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well defined volume fractions. Otherwise, pairwise 
estimation of twinning differences was used to provide 
an initial estimate of the volume fraction for pre- 
liminary studies, such as calculation of difference- 
Patterson functions. Structure-factor least squares was 
used to provide volume fractions for the final structure 
solution. One should note that least-squares-refined 
volume fractions lie within the range of values 
suggested by the 'Britton' plots and the values 
determined by R minimization lie close to these. Values 
obtained by pairwise estimation fit less well. We have 
taken steps to ensure that these differences are not a 
consequence of the effective weighting of observations 
in each technique. In the 'Britton' method, the volume 
fraction is defined by the few intensity pairs with the 
smallest values of 11/(11 + I2). In least-squares 
refinement and, by analogy, in R minimization, the 
contribution of each pair of measurements depends 
upon d(J1)/dx which is proportional to (12 - I~). Thus, 
in these three cases the contribution is greatest when 
the difference between twinning-related intensities is 
large. In order to mimic these weighting schemes we 
have used only those intensity pairs for which 11/(11 + 
12) is less than 0.25, where I 1 is the smaller intensity, in 
preparation of Figs. 3(a) and 3(b). When this limit is 
not imposed, the curves become broader but the 
estimates of the volume fraction remain the same. We 
have not been able to deduce the reason for the large 
deviation of pairwise-estimated volume fractions from 
those estimated in other ways. 

A c c u r a c y  o f  t w i n n i n g - c o r r e c t e d  d a t a  

To assess the efficacy of the corrections we have made 
on diffraction data from B-phycoerythrin crystals, we 
shall analyze the propagation of errors into the 
corrected intensities, discuss briefly the results of our 
low-resolution structure solution, and analyze the 

errors which would be introduced into an electron- 
density map if no twinning correction was made. 

A conventional expression for estimation of error 
propagation is that given by Hamilton (1964): for 

f(Xl,X2, . . .), 

ox,] 
One can apply this relation to (1) to obtain 

r" 

= 1(1 - x )  2 4 ,  + x 2 42 as, 
[ ( 11__12 )2 

+ 
1 - 2x 

A few simple manipulations will reveal the behavior of 
this function. In the best case, o x is small. If a h __ a12, 
(3) reduces to 

(1 - 2x + 2 x 2 )  1/2 
- 0-1 

a s ' -  1 -- 2x 

which becomes 1.1 a t for x = 0-1, 1.6o 1 for x = 0.25 
and 2.2al for x = 0.33. If the error in x is substantial 
and the difference between 11 and 12 is large, the 
situation will be much worse than this. To assure 
oneself that the correction is indeed greater than the 
error introduced, one can compare (1) to its expected 
standard deviation. Expression (1)can be rearranged to 
get 

x 
J1 = 11 + ~ (I1 - I2). 

1 - 2x 

If a I is small, (3) becomes 

ax 
as' - (1 - 2x) 2 Ill  - 12 I. 

Therefore, so as long as ax/(1 -- 2x)  2 is less than x/(1 
- -  2x), or a x < x(1 -- 2x), the correction is significant. 

Table 1. Twinning fractions (%) estimated for diffraction data from crystals of B-phycoerythrin 

The 3200 data in the analysis were measured by rotation photography to 5.0 A resolution. Those twinning fractions marked * were judged 
to be accurately estimated from 'Britton' plots and were fixed at the values shown for least-squares heavy-atom refinement. In columns 
labeled a and b, the data from the crystal marked 5- were corrected for twinning according to the fraction shown and these corrected data 
were used as the basis for estimation of the other twinning fractions in that column. In column c the estimates were prepared by use of 
uncorrected data from crystal 2 as a basis for comparison. A constant value was then added to all estimates to bring the entire column 
to the approximate levels of columns a and b for that method of estimation. 

Method of estimation 
Heavy-atom 

least R minimization Pairwise estimation 
Crystal 'Britton' plot squares a b ¢ mean a b c mean 

1. Native 5 .9 -6 .2  6.0* 6 .0 t  5.0 5-7 5.6 6.0"~ 8-0 7-0 7-0 
2. Derivative 1 0 .85-0 .95  0.9* - 0 . 4 5  0 .9 t  1.5 0.65 - 0 . 7 5  0 .9 t  0.4 0.2 
3. Derivative 1' 1.9-4.5 2.9 4.5 2.3 3.0 3.3 4.6 4.8 4.2 4.5 
4. Derivative 2 1.9-4.3 2.2 3.7 1.4 2.1 2.4 1.8 2.7 3.3 2.6 
5. Derivative 3 7-2-8 .9  7-5 8.7 6.3 7.0 7.3 9.5 8-8 8.3 8-9 
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This means that for small x a x must be less than x. The 
largest upper limit for ax is 0.125 at x = 0.25. 

Results of the structure determination of B- 
phycoerythrin at 5.0 A resolution will be described in 
detail elsewhere (Fisher, Woods, Fuchs & Sweet, 
1980). Some of the conventional indicators of the 
quality of the multiple isomorphous replacement 
phasing are shown in Table 2. The evidence that the 
structure solution, derived from twinning-corrected 
data, is substantially correct is as follows. (1) The 
indicators in Table 2 are consistent with a correctly 
determined structure. (2) The electron-density map 
clearly reveals a molecular symmetry element which we 
had not confirmed in any other way. (3) The structure 
consists largely of extended regions of connected 
density. (4) The molecule contains a region of uniform 
low density which is presumably occupied by a single 
disordered polypeptide chain (Sweet, Fuchs, Fisher & 
Glazer, 1977; Fisher, Woods, Fuchs & Sweet, 1980). 
From these results we conclude that the corrections 
were at least sufficient to provide a solution to the 
structure. Whether they were necessary is examined 
through an additional analysis of the data. 

To assess quantitatively the effect of the twinning 
correction on the final electron-density map, an 
artificial heavy-atom refinement was performed. Data 
which had not been corrected for twinning, coming 
from both the native and the heavy-atom-derivative 
crystals, were used for the refinement; the starting 
parameters for the heavy atoms were those which were 
used in the structure solution (Fisher, Woods, Fuchs & 
Sweet, 1980). At the conclusion of the refinement the 
least-squares residuals and other indicators were 
virtually the same as those shown in Table 2. The lack 
of improvement in phasing statistics after correction for 
twinning may result from the slight increase in random 
error, described earlier, which accompanies correction 
of the systematic twinning error. The new and 
incorrectly phased transform values (mF).ncor ~ were 
clearly different from the correctly phased, twinning- 
corrected ones, (mF)corr. Values of A (mF) = (mF).neor ~ 
-- (mF)corr, and phase differences, d~p, between F¢orr and 
Funcorr were evaluated for each reflection, where m is the 
figure of merit of the phase (Dickerson, Weinzierl & 

Table 2. Stat&tics of phasing and refinement 

Fc = ( f ~ ) , , , 2 ;  E = (e2) ' "2 ;  RK = (e) / (F , , ,~ , ) ;  e = IFpHI - -  IF,,, + f i l l .  
Fp, Fpn and fn are structure factors for native protein, protein 
derivative and the heavy atom, respectively. Means are evaluated 
for all reflections. Structure factors are on an arbitrary scale. 

Derivative F c E Rr (%) 

1 0.75 0.43 6.7 
1' 0-72 0.39 6.3 
2 0.85 0.46 7.2 
3 0-41 0-26 4.0 

Palmer, 1968). The most significant trends in values of 
IA~01 and IA(mF)I were seen when average values were 
tabulated as a function of the ratio Z = J1/(Jl + J2). 
Although the mean value of IA(mF)I varies over less 
than a factor of two throughout the range of Z, it is 
largest at the extremes. As one might expect, I A~I, 
which as a mean of 22 ° for all data, is largest at small 
values of Z, decreasing smoothly as Z increases to 1-0. 

More to the point of structure determination, one can 
analyze, in terms of the A(mF), the errors which would 
be introduced into an electron-density map by failure to 
correct for crystal twinning. One can show that the 
r.m.s, magnitude of an inverse Fourier transform is 
proportional to the r.m.s, modulus of the transform. 
Thus we can calculate the 'relative error' in an 
electron-density map as 

( A p 2 )  '/z (A(mF)2) '/2 

(p2),/2 ((mF)2),/2 

When F000 is included in the mean, the relative error is 
0.05. This means that an electron-density map calcu- 
lated from uncorrected data would contain errors, the 
r.m.s, value of which is equivalent to one twentieth of 
the total matter in the structure. On the other hand, one 
rarely calculates electron-density maps which include 
F0o 0. When this term is excluded the relative error 
becomes 0.3. Maps calculated from (mF)eorr, 
(mF)uncorr, and A(mF) confirm that this theoretical 
treatment of error is quantitatively correct. The maps 
also show, however, that a mean phase difference of 
22 ° is not particularly significant: although there are 
differences in detail, the general features of the electron 
density are quite similar in the maps calculated from 
corrected and uncorrected data. Thus it seems likely 
that the twinning corrections we have made are 
important to our having determined the correct 
structure, although features of the correct structure 
may have been apparent without them. Further studies 
will show if the significance of the twinning corrections 
increases for a higher-resolution structure and if the 
corrections can be made at all. 

The methods we have developed are able to correct 
errors in diffraction data which result from twinning by 
merohedry. Our analysis of the twinning correction of 
B-phycoerythrin data shows that because the crystals 
used in data collection were twinned very little, the 
overall improvement of the final structure was small. 
However, the analysis does suggest that problems in 
macromolecular crystallography with substantially 
larger degrees of twinning can be tackled with 
confidence of success. 

A number of features of the twinning-correction 
problem lead to suggestions in experimental design 
which may be of use to others. The first is that if 
diffraction intensities are to be measured one at a time, 
e.g. on a difractometer, extra effort could be put into 
measuring the data which show the largest differences 
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between twinning-related maxima, since it is these 
intensities which are most useful in the determination of 
the twinning fraction. A second is that since twin 
domains may not all be small or may not be evenly 
distributed throughout a specimen, one should ensure 
that the volume of the crystal bathed by the X-ray 
beam is constant throughout data collection. 
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Abstract 

The acoustic gyrotropic tensor is a fifth-rank tensor 
characterized by do, z =  -dj~, t, with i, j = 11, 22, 33, 
(23, 32), (31, 13), (12, 21), l -- 1, 2, 3, and controls the 
acoustical activity in crystals. With the employment of 
group theoretical methods, the number of independent 
coefficients of this tensor and the character for this 
tensor under proper and improper rotation are worked 
out. A classification of the acoustically active classes is 
given. 

Introduction 

The phenomenon of acoustical activity refers to the 
rotation of the plane of polarization of a transverse 
acoustic wave propagating along the acoustic axis. 
According to Portigal & Burstein (1968), who predic- 
ted this effect, acoustical activity arises due to 
first-order spatial dispersion contributions to elastic 

constants, just as optical activity is the result of 
first-order spatial dispersion contributions to the 
dielectric constant. Consequently, the velocity 
degeneracy of the linearly polarized transverse acoustic 
phonons at k = 0 is lifted at finite k where k is the 
phonon wave vector. The two split modes are left and 
right circularly polarized along the acoustic axis and 
they propagate with different phase velocities. This 
phase-velocity difference leads to the rotation of the 
plane of polarization. 

Direct observation of acoustical activity in a-quartz 
by Brillouin scattering techniques has been reported by 
Pine (1970). The splitting of the degenerate optical 
phonons due to first-order spatial dispersion has also 
been observed by Pine & Dresselhaus (1969) in the 
low-temperature Raman spectrum of a-quartz. 

Portigal & Burstein (1968) have identified the 
non-vanishing coefficients of the acoustic gyrotropic 
tensor for point groups T, T a and O from symmetry 
considerations. We have derived the number of 
non-vanishing coefficients of this tensor and identified 
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